Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A study of the catalytic hydroconversion of biocarboxylic acids to bioalcohols using octanoic acid as model reactant

Identifieur interne : 002077 ( Main/Repository ); précédent : 002076; suivant : 002078

A study of the catalytic hydroconversion of biocarboxylic acids to bioalcohols using octanoic acid as model reactant

Auteurs : RBID : Pascal:12-0412838

Descripteurs français

English descriptors

Abstract

The catalytic hydrodeoxygenation (HDO) of octanoic acid (C7COOH) to octene and octane was found to proceed in consecutive reaction through octyl aldehyde and octyl alcohol intermediates. Aluminosilicate and γ-alumina supported Cu and Cu,In catalysts were applied in a fixed bed flow-through reactor at 21 bar total pressure in the temperature range of 330-380 C. The feed was 7.1% C7COOH/84.3% H2/He. The WHSV of the acid was 1.82 h-1. The results suggested that at lower temperatures the rate of acid hydrogenation/dehydration determined the rate of the consecutive hydroconversion process and alcohol selectivity. The reduction of aldehyde was facile, thus, the aldehyde selectivity was low under most conditions. At lower temperatures and conversions the acid coverage was high hindering the catalytic dehydration of the product alcohol. At higher temperatures and acid conversions the alcohol dehydration activity of the catalyst determined the alcohol selectivity. The indium additive was found to increase the HDO activity and the alcohol selectivity of the copper catalysts significantly. The favorable effects of indium were attributed to the formation of new catalytically active Cu2In alloy phase.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0412838

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A study of the catalytic hydroconversion of biocarboxylic acids to bioalcohols using octanoic acid as model reactant</title>
<author>
<name sortKey="Harnos, Szabolcs" uniqKey="Harnos S">Szabolcs Harnos</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri u. 59-67</s1>
<s2>1025 Budapest</s2>
<s3>HUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Hongrie</country>
<placeName>
<settlement type="city">Budapest</settlement>
<region nuts="2">Hongrie centrale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Onyestyak, Gy Rgy" uniqKey="Onyestyak G">Gy Rgy Onyestyak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri u. 59-67</s1>
<s2>1025 Budapest</s2>
<s3>HUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Hongrie</country>
<placeName>
<settlement type="city">Budapest</settlement>
<region nuts="2">Hongrie centrale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Valyon, J Zsef" uniqKey="Valyon J">J Zsef Valyon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri u. 59-67</s1>
<s2>1025 Budapest</s2>
<s3>HUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Hongrie</country>
<placeName>
<settlement type="city">Budapest</settlement>
<region nuts="2">Hongrie centrale</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0412838</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0412838 INIST</idno>
<idno type="RBID">Pascal:12-0412838</idno>
<idno type="wicri:Area/Main/Corpus">001694</idno>
<idno type="wicri:Area/Main/Repository">002077</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0926-860X</idno>
<title level="j" type="abbreviated">Appl. catal., A Gen. : (Print)</title>
<title level="j" type="main">Applied catalysis. A, General : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Additive</term>
<term>Alcohol</term>
<term>Aldehyde</term>
<term>Alloys</term>
<term>Alumina</term>
<term>Aluminosilicates</term>
<term>Catalytic reaction</term>
<term>Chemical reduction</term>
<term>Conversion</term>
<term>Copper</term>
<term>Dehydration</term>
<term>Destruction</term>
<term>Fixed bed</term>
<term>Heterogeneous catalysis</term>
<term>Hydrogenation</term>
<term>Indium</term>
<term>Models</term>
<term>Octane</term>
<term>Octanoic acid</term>
<term>Reactor</term>
<term>Selectivity</term>
<term>Support</term>
<term>Supported catalyst</term>
<term>Zeolite</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Réaction catalytique</term>
<term>Acide octanoïque</term>
<term>Modèle</term>
<term>Alumine</term>
<term>Catalyseur sur support</term>
<term>Catalyse hétérogène</term>
<term>Alliage</term>
<term>Destruction</term>
<term>Zéolite</term>
<term>Octane</term>
<term>Aldéhyde</term>
<term>Alcool</term>
<term>Aluminosilicate</term>
<term>Support</term>
<term>Lit fixe</term>
<term>Réacteur</term>
<term>Hydrogénation</term>
<term>Déshydratation</term>
<term>Sélectivité</term>
<term>Réduction chimique</term>
<term>Conversion</term>
<term>Indium</term>
<term>Additif</term>
<term>Cuivre</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Alliage</term>
<term>Alcool</term>
<term>Déshydratation</term>
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The catalytic hydrodeoxygenation (HDO) of octanoic acid (C
<sub>7</sub>
COOH) to octene and octane was found to proceed in consecutive reaction through octyl aldehyde and octyl alcohol intermediates. Aluminosilicate and γ-alumina supported Cu and Cu,In catalysts were applied in a fixed bed flow-through reactor at 21 bar total pressure in the temperature range of 330-380 C. The feed was 7.1% C
<sub>7</sub>
COOH/84.3% H
<sub>2</sub>
/He. The WHSV of the acid was 1.82 h
<sup>-1</sup>
. The results suggested that at lower temperatures the rate of acid hydrogenation/dehydration determined the rate of the consecutive hydroconversion process and alcohol selectivity. The reduction of aldehyde was facile, thus, the aldehyde selectivity was low under most conditions. At lower temperatures and conversions the acid coverage was high hindering the catalytic dehydration of the product alcohol. At higher temperatures and acid conversions the alcohol dehydration activity of the catalyst determined the alcohol selectivity. The indium additive was found to increase the HDO activity and the alcohol selectivity of the copper catalysts significantly. The favorable effects of indium were attributed to the formation of new catalytically active Cu
<sub>2</sub>
In alloy phase.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0926-860X</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. catal., A Gen. : (Print)</s0>
</fA03>
<fA05>
<s2>439-40</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>A study of the catalytic hydroconversion of biocarboxylic acids to bioalcohols using octanoic acid as model reactant</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HARNOS (Szabolcs)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ONYESTYAK (György)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VALYON (József)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri u. 59-67</s1>
<s2>1025 Budapest</s2>
<s3>HUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>31-40</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18840A</s2>
<s5>354000504478390050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0412838</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied catalysis. A, General : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The catalytic hydrodeoxygenation (HDO) of octanoic acid (C
<sub>7</sub>
COOH) to octene and octane was found to proceed in consecutive reaction through octyl aldehyde and octyl alcohol intermediates. Aluminosilicate and γ-alumina supported Cu and Cu,In catalysts were applied in a fixed bed flow-through reactor at 21 bar total pressure in the temperature range of 330-380 C. The feed was 7.1% C
<sub>7</sub>
COOH/84.3% H
<sub>2</sub>
/He. The WHSV of the acid was 1.82 h
<sup>-1</sup>
. The results suggested that at lower temperatures the rate of acid hydrogenation/dehydration determined the rate of the consecutive hydroconversion process and alcohol selectivity. The reduction of aldehyde was facile, thus, the aldehyde selectivity was low under most conditions. At lower temperatures and conversions the acid coverage was high hindering the catalytic dehydration of the product alcohol. At higher temperatures and acid conversions the alcohol dehydration activity of the catalyst determined the alcohol selectivity. The indium additive was found to increase the HDO activity and the alcohol selectivity of the copper catalysts significantly. The favorable effects of indium were attributed to the formation of new catalytically active Cu
<sub>2</sub>
In alloy phase.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01A03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01I05A</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Réaction catalytique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Catalytic reaction</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Reacción catalítica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Acide octanoïque</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Octanoic acid</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Acido octanoico</s0>
<s2>NK</s2>
<s2>FR</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Modèle</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Models</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Modelo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Alumine</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Alumina</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Alúmina</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Catalyseur sur support</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Supported catalyst</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Catalizador sobre soporte</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Catalyse hétérogène</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Heterogeneous catalysis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Catálisis heterogénea</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Alliage</s0>
<s2>NA</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Alloys</s0>
<s2>NA</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Aleación</s0>
<s2>NA</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Destruction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Destruction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Destrucción</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Zéolite</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Zeolite</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Zeolita</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Octane</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Octane</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Octano</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Aldéhyde</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Aldehyde</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Aldehído</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Alcool</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Alcohol</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Alcohol</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Aluminosilicate</s0>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Aluminosilicates</s0>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Aluminosilicato</s0>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Support</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Support</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Soporte</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Lit fixe</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Fixed bed</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Lecho fijo</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Réacteur</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Reactor</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Reactor</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Hydrogénation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Hydrogenation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Hidrogenación</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Déshydratation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Dehydration</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Deshidratación</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Sélectivité</s0>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Selectivity</s0>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Selectividad</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Réduction chimique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Chemical reduction</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Reducción química</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Conversion</s0>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Conversion</s0>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Conversión</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Additif</s0>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Additive</s0>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Aditivo</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>10</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>10</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>10</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Tamis moléculaire</s0>
<s5>11</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Molecular sieve</s0>
<s5>11</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Tamiz molecular</s0>
<s5>11</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Métal transition</s0>
<s2>NC</s2>
<s5>27</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Transition metal</s0>
<s2>NC</s2>
<s5>27</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Metal transición</s0>
<s2>NC</s2>
<s5>27</s5>
</fC07>
<fN21>
<s1>317</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002077 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002077 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0412838
   |texte=   A study of the catalytic hydroconversion of biocarboxylic acids to bioalcohols using octanoic acid as model reactant
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024